If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(6^2x+3)=1512
We move all terms to the left:
7(6^2x+3)-(1512)=0
We multiply parentheses
42x^2+21-1512=0
We add all the numbers together, and all the variables
42x^2-1491=0
a = 42; b = 0; c = -1491;
Δ = b2-4ac
Δ = 02-4·42·(-1491)
Δ = 250488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{250488}=\sqrt{1764*142}=\sqrt{1764}*\sqrt{142}=42\sqrt{142}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{142}}{2*42}=\frac{0-42\sqrt{142}}{84} =-\frac{42\sqrt{142}}{84} =-\frac{\sqrt{142}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{142}}{2*42}=\frac{0+42\sqrt{142}}{84} =\frac{42\sqrt{142}}{84} =\frac{\sqrt{142}}{2} $
| -(n-8=-2 | | 6(x-1/2)=10(2/3-1/3x) | | 2(x+7)-10=6x+24 | | 28–3x–5x=4 | | 4(x-1)=1/2(×-8) | | 1/7+5x/7=3 | | 1112=12x+2x+112 | | 3x^2+2x-20=3 | | 6+x+5-3x=2x-3-2x | | 0-1y=6 | | 2y+211/8y=190 | | 2y+2•11/8y=190 | | n*60=180 | | -11+1+8n+4=4n+5n | | 1/3x+2=66 | | n*60=100 | | (2x-3/6)=2x/3+1/2 | | 5-15i/5i=0 | | 9/5+3/5x=41/15+4/3x+1/3 | | 5t+12=72 | | m*72=24 | | -4(z-5)(-z+3)=0 | | 8+3q=-2 | | i-9=-18 | | -1=-4+e/8 | | 3z(z-7)(z+2)=0 | | b/6-9=-9 | | 58x=30x-2 | | 7x0+8(Y)=0 | | (u-7)(u-9)=0 | | (5-z)(5z-8)=0 | | 5x-19=-7+7x |